
19 Beginners' Class
Chapter 17 illustrated a few applications of structs. The first was a reworking of an
earlier example, from Section 13.2, where data on pupils and their marks had to be
sorted. In the original example, the names and marks for pupils were in separate arrays.
Logically, a pupil's name and mark should be kept together; the example in Section 17.1
showed how this could be done using a struct. The marks data in these structs were
only examined by the sort function, and about the only other thing that happened to the
structs was that they got copied in assignment statements. In this example, the structs
were indeed simply things that kept together related data.

In all the other examples from Chapter 17, the structs were used by many functions.
Thus the Points could be combined with an AddPoint() function, while the Customer
records in 17.3 were updated, transferred to and from disk, and printed. Although they
used arrays rather than structs, the examples in Chapter 18 also had data structures that
had many associated functions. Thus, the different forms of "hash table" all had
functions for initialization, searching for a key, inserting a key, along with associated
support functions (like the check for a "null" hash table entry). Similarly, the "bit
maps" for the information retrieval system in Section 18.3 had a number of associated
functions that could be used to do things like set specific bits.

You would have difficulties if you were asked "Show me how this code represents a
'Customer' (or a 'Hash Table', or a 'Bit map')". The program's representation of these
concepts includes the code manipulating the structures as well as the structures
themselves.

This information is scattered throughout the program code. There is nothing to
group the functions that manipulate Customer records. In fact, any function can
manipulate Customer records. There may have been a PrintDetails(Customer&)
function for displaying the contents of a Customer record but there was nothing to stop
individual data members of a Customer record being printed from main().

When programs are at most a couple of hundred lines, like the little examples in
Chapters 17 and 18, it doesn't much matter whether the data structures and associated
functions are well defined. Such programs are so small that they are easy to "hack out"
using any ad hoc approach that comes to mind.

19

More than just a data
collection

Data and associated
functions

546 Beginners' class

As you get on to larger programs, it becomes more and more essential to provide
well defined groupings of data and associated functionality. This is particularly
important if several people must collaborate to build a program. It isn't practical to
have several people trying to develop the same piece of code, the code has to be split up
so that each programmer gets specific parts to implement.

You may be able to split a program into separately implementable parts by
considering the top level of a top-down functional decomposition. But usually, such
parts are far from independent. They will need to share many different data structures.
Often lower levels of the decomposition process identify requirements for similar
routines for processing these structures; this can lead to duplication of code or to
inconsistencies. In practice, the individuals implementing different "top level
functions" wouldn't be able to go off and proceed independently.

An alternative decomposition that focussed on the data might work better. Consider
the information retrieval example (Section 18.3), you could give someone the task of
building a "bit map component". This person would agree to provide a component that
transferred bit maps between memory and disk, checked equality of bit maps, counted
common bits in two maps, and performed any other necessary functions related to bit
maps. Another component could have been a "text record component". This could
have been responsible for displaying its contents, working with files, and (by curtesy of
the bit map component) building a bit map that encoded the key words that were present
in that text record.

The individuals developing these two components could work substantially
independently. Some parts of a component might not be testable until all other
components are complete and brought together but, provided that the implementors start
by agreeing to the component interfaces, it is possible to proceed with the detailed
design and coding of each component in isolation.

The code given in Chapter 18 had an interface (header) file that had a typedef for the
"bit map" data and function prototypes for the routines that did things like set specific
bits. A separate code file provided the implementations of those routines. As a coding
style, this is definitely helpful; but it doesn't go far enough. After all, a header file
basically describes the form of a data structure and informs other programmers of some
useful functions, already implemented, that can be used to manipulate such structures.
There is nothing to enforce controls; nothing to make programmers use the suggested
interface.

Of course, if implementors are to work on separate parts of a program, they must
stick to the agreed interfaces. Consider the example of programmers, A, B, C, and D
who were working on a geometry modelling system. Programmer A was responsible
for the coordinate component; this involved points (struct pt { double x, y; };)
and functions like offset_pt(double dx, double dy). Programmer B was
uncooperative and did not want to wait for A to complete the points component.
Instead of using calls to offset_pt() B wrote code that manipulated the data fields
directly (pt p; … p.x += d1;). B then left the project and was replaced by D.

Functional
abstraction?

or "data abstraction"

Data abstraction: its
more than just a

header file!

Building a wall
around data

Intoduction 547

Programmer C needed polar coordinates and negotiated with A for functions
radius(const pt p) and theta(const pt p). After implementing these functions,
A and C did a timing analysis of their code and found that these new functions were
being called very often and represented a measurable percentage of the run time.

Programmer A, who after all was officially responsible for the definition of points
and their behaviour, updated things so that the struct contained polar as well as cartesian
coordinates (struct pt { double x, y, r, theta; };). A changed the new
radius() and theta() functions so that these simply returned the values of the extra
data members and then changed all the functions like offset_pt() so that these
updated the polar coordinates as well as the cartesian coordinates.

Programmers C and D duly recompiled their parts to reflect the fact that the
definition of struct pt had changed with the addition of the extra data members.

Programmer A was fired because the code didn't work. C and D wasted more than a
week on A's code before they found the incorrect, direct usage of the struct in the code
originally written by B.

The problem here was that A couldn't define a "wall" around the data of a point
structure. The header file had to describe the structure as well as the prototypes of A's
routines. Since the structure was known, uncooperative programmers like B could
access it.

Things would have been different if A could have specified things so that point
structures could only be used via A's own routines. (In particular, A would still have a
job, while B would probably have quit before the project really started.)

Modern programs typically require many "components". These components consist
of the declaration of new type of data object and of the functions that are to be used to
manipulate instances of this new type. You do require "walls around the data". When
you define a new data type, you should be able to specify how it is to be used. If you
can define components like this, then you can expect to be able to put a program
together by combining separately developed components that work in accord with
specified interfaces.

It is possible use the older C language to implement components. Possible. But it is
not always easy and it does depend on the discipline of the programmers. C doesn't
enforce compliance with an interface. (One could argue that C doesn't enforce
anything!) In contrast, the C++ language has extensive support for the programmer
who needs to define and work with new data types.

The new language feature of C++ that supports a component oriented style of
programming is "class". A "class" is meant to describe a conceptual entity; that is
describe something that owns data and provides services related to its data.

A class declaration defines a new data type. The declaration does specify the form
of a data structure and in this respect it is like a struct declaration. Once the compiler
has seen the class declaration, it permits the definition of variables of this new type;
these variables are normally referred to as "instances of a class" or "objects".

In addition to describing the data members, a class declaration allows a programmer
to specify how objects that are instances of the class can be used. This is done by

The need for
components

Language support for
reliable data types

Classes

548 Beginners' class

identifying those functions that are allowed to access and change data members in an
object. These functions are mainly "member functions". Member functions form part
of the definition of the new data type.

The code for member functions is not normally included in the class declaration.
Usually, a class declaration is in a header file; the code implementing the member
functions will be in a separate code file (or files). However, at the point where they are
defined, member functions clearly identify the class of which they are a part.
Consequently, although the description of a class may be spread over a header file and
several code files, it is actually quite easy to gather it all together in response to a
request like "Show me how this code represents a 'Customer'."

Classes and design

The major benefit of classes is that they encourage and support a "component oriented"
view of program development. Program development is all about repeatedly
reanalyzing a problem, breaking it down into smaller more manageable pieces that can
be thought about independently. The decomposition process is repeated until you know
you have identified parts that are simple enough to be coded, or which may already
exist. We have seen one version of this overall approach with the "top down functional
decomposition" designs presented in Part III. Components (and the classes that
describe them) give you an additional way of breaking up a problem.

In fact, for large programs you should start by trying to identify the "components"
needed in a program. You try to partition the problem into components that each own
some parts of the overall data and perform all the operations needed on the data that
they own. So you get "bit map" components, "hash table" components, "word"
components and "text record" components. You characterize how the program works in
terms of interactions among these components – e.g. "if the hash_table identifies a
vocab_item that matches the word, then get the bit number from that vocab_item and
ask the bit_map to set that bit". You have to identify all uses of a component. This
allows you to determine what data that component owns and what functions it performs.
Given this information, you can define the C++ class that corresponds to the identified
component.

Once you have completed an initial decomposition of the programming problem by
identifying the required classes, you have to complete a detailed design for each one.
But each class is essentially a separate problem. Instead of one big complex
programming problem, you now have lots little isolated subproblems. Once the data
and member functions of a class have been identified, most of the work on the design of
a class relates to the design and implementation of its individual member functions.

When you have reached the level of designing an individual member function of a
class you are actually back in the same sort of situation as you were with the examples
in Parts II and III. You have a tiny program to write. If a member function is simple,
just assignments, loops, and selection statements, it is going to be like the examples in

Classes facilitate
program design

Finding components

Designing the classes

Designing the
member functions

Intoduction 549

Part II where you had to code a single main(). If a member function has a more
complex task to perform, you may have to identify additional auxiliary functions that do
part of its work. So, the techniques of top down functional decomposition come into
play. You consider coding the member function as a problem similar to those in Part
III. You break the member function down into extra functions (each of which becomes
an extra member function of the class) until you have simplified things to the point
where you can implement directly using basic programming constructs.

Breaking a problem into separately analyzable component parts gives you a way of
handling harder problems. But there are additional benefits. Once you start looking for
component parts, you tend to find that your new program requires components that are
similar to or identical to components that you built for other programs. Often you can
simply reuse the previously developed components.

This is a bit like reusing algorithms by getting functions from a function library,
such as those described in Chapter 13. However, the scale of reuse is greater. If you
get a sort() function from a function library, you are reusing one function. If you get
a ready built bitmap class, you get an integrated set of functions along with a model for
a basic data structure that you require in your program. Increasingly, software
developers are relying on "class libraries" that contain classes that define ready made
versions of many commonly required components.

Issues relating to the decomposition of problems into manageable parts, and reuse,
exist as an underlying leitmotif or theme behind all the rest of the materials in the part
of the text.

Topics in this chapter

Section 19.1 introduces C++ classes. It covers the declaration of a simple class and the
definition of its member functions. Classes can be complex. Many aspects are deferred
to later chapters (and some aspects aren't covered in this text at all).

The next two sections present simple examples. Class Bitmap, section 19.2, is a
more complete representation of the concept of a bit map data object similar to that
introduced in the information retrieval example in section 19.3. Class Number, section
19.3, represents an integer. You might think that with shorts, longs, (and long longs)
there are already enough integers. Those represented as instances of class Number do
however have some rather special properties.

Reusing components

19.1 CLASS DECLARATIONS AND DEFINITIONS

19.1.1 Form of a class declaration

A class declaration introduces the name of a new data type, identifies the data members
present in each variable of this type (i.e. each "class instance" or "object"), identifies the

550 Beginners' class

member functions that may be used to manipulate such variables, and describes the
access (security) controls that apply. A declaration has the form:

class Name {
details …
more details …

};

The declaration starts with the keyword class. The name of the class is then given.
The usual naming rules apply, the name starts with a letter and contains letters, digits
and underscore characters. (Sometimes, there may be additional naming conventions.
Thus you may encounter an environment where you are expected to start the name of a
class with either 'T' or 'C'. Such conventions are not followed here.)

The body of the declaration, with all the details, comes between { and } brackets.
The declaration ends with a semicolon. Compilers get really upset, and respond with
incomprehensible error messages, if you omit that final semicolon.

The details have to include a list of the associated functions and data members.
Initially the examples will be restricted slightly, the associated functions will all be
"member functions", that is they all are functions that are inherently part of the
definition of the concept represented by the class. (There are other ways of associating
functions with classes, they get touched on later in Section 23.2.) These lists of
member functions and data members also specify the access controls.

There are only two kinds of access that need be considered at this stage. They are
defined by the keywords public and private. A public member function (or data
member) is one that can be used anywhere in the code of the program. A private data
member (or member function) is one that can only be used within the code of the
functions identified in the class declaration itself. Note the wording of the explanation.
Generally, data members are all private, there may also be a few private member
functions. The main member functions are all public (sometimes, but very rarely,
there may be public data members).

You can specify the appropriate access control for each data member and member
function individually, or you can have groups of public members interspersed with
groups of private members. But most often, the following style is used:

class Name {
public:

details of the "public interface" of the class
private:

private implementation details
and description of data members of each instance
of the class…

};

In older text books, you may find the order reversed with the private section defined
first. It is better to have the public interface first. Someone who wants to know how

Keywords 'public'
and 'private'

Form of a class declaration 551

to use objects of this class need only read the public interface and can stop reading at
the keyword private.

The following examples are just to make things a little more concrete (they are
simplified, refinements and extensions will be introduced later). First, there is a class
defining the concept of a point in two dimensional space (such as programmer A, from
the earlier example, might have wished to define):

class Point {
public:

…
// Get cartesian coords
double X();
double Y();
// Get polar coords
double Radius();
double Theta();
// Test functions
int ZeroPoint();
int InFirstQuad();
…
// Modify
void Offset(double deltaX, double deltaY);
…
void SetX(double newXval);
…
// Comparisons
int Equal(const Point& other);
…

private:
void FixUpPolarCoords();
…
double fX, fY, fR, fTheta;

};

(The ellipses, "…", indicate places where additional member functions would appear in
actual class declaration; e.g. there would be several other test functions, hence the
ellipsis after function InFirstQuad(). The ellipsis after the public keyword marks
the place where some special initialization functions would normally appear; these
"constructor" functions are described in section 19.1.4 below.)

The public interface specifies what other programmers can do with variables that are
instances of this type (class). Points can be asked where they are, either in cartesian or
polar coordinate form. Points can be asked whether they are at the coordinate origin or
whether they are in a specified quadrant (functions like ZeroPoint() and
InFirstQuad()). Points can be asked to modify their data members using functions
like Offset(). They may also be asked to compare themselves with other points
through functions like Equal().

The private section of the class declaration specifies things that are concern of the
programmer who implemented the class and of no one else. The data members

The public role of
Points

The private lives of
Points

552 Beginners' class

generally appear here. In this case there are the duplicated coordinate details – both
cartesian and polar versions. For the class to work correctly, these data values must be
kept consistent at all times.

There could be several functions that change the cartesian coordinate values
(Offset(), SetX() etc). Every time such a change is made, the polar coordinates
must also be updated. During the detailed design of the class, the code that adjusts the
polar coordinates would be abstracted out of the functions like SetX(). The code
becomes the body for the distinct member function FixUpPolarCoords().

This function is private. It is an implementation detail. It should only be called
from within those member functions of the class that change the values of the cartesian
coordinates. Other programmers using points should never call this function; as far as
they are concerned, a point is something that always has consistent values for its polar
and cartesian coordinates.

For a second example, how about class Customer (based loosely on the example
problem in Section 17.3):

class Customer {
public:

…
// Disk transfers
int ReadFrom(ifstream& input);
int WriteTo(ofstream& output);
// Display
void PrintDetails(ofstream& out);
// Query functions
int Debtor();
…
// Changes
void GetCustomerDetails();
void GetOrder();
…

private:
UT_Word fName;
…
UT_Word fOrders[kMAXITEMS];
int fNumOrder;
double fAmountOwing;
Date fLastOrder;

};

Class Customer should define all the code that manipulates customer records. The
program in Section 17.3 had to i) transfer customer records to/from disk (hence the
WriteTo() and ReadFrom() functions, ii) display customer details (Print-
Details()), iii) check details of customers (e.g. when listing the records of all who
owed money, hence the Debtor() function), and had to get customer details updated.
A Customer object should be responsible for updating its own details, hence the
member functions like GetOrder().

Form of a class declaration 553

The data members in this example include arrays and a struct (in the example in
Section 17.3, Date was defined as a struct with three integer fields) as well as simple
data types like int and double. This is normal; class Point is atypical in having all its
data members being variables of built in types.

There is no requirement that the data members have names starting with 'f'. It is
simply a useful convention that makes code easier to read and understand. A name
starting with 'g' signifies a global variable, a name with 's' is a "file scope" static
variable, 'e' implies an enumerator, 'c' or 'k' is a constant, and 'f' is a data member of a
class or struct. There are conventions for naming functions but these are less frequently
adhered to. Functions that ask for yes/no responses from an object (e.g. Debtor() or
InFirstQuad()) are sometimes given names that end with '_p' (e.g Debtor_p()); the
'p' stands for "predicate" (dictionary: 'predicate' assert or affirm as true or existent).
ReadFrom() and WriteTo() are commonly used as the names of the functions that
transfer objects between memory and disk. Procedures (void functions) that perform
actions may all have names that involve or start with "Do" (e.g. DoPrintDetails()).
You will eventually convince yourself of the value of such naming conventions; just try
maintaining some code where no conventions applied.

Minor point on
naming conventions

19.1.2 Defining the member functions

A class declaration promises that the named functions will be defined somewhere.
Actually, you don't have to define all the functions, you only have to define those that
get used. This allows you to develop and test a class incrementally. You will have
specified the class interface, with all its member functions listed, before you start
coding; but you can begin testing the code as soon as you have a reasonable subset of
the functions defined.

Usually, class declarations go in header files, functions in code files. If the class
represents a single major component of the program, e.g. class Customer, you will
probably have a header file Customer.h and an implementation file Customer.cp.
Something less important, like class Point, would probably be declared in a header file
("geom.h") along with several related classes (e.g. Point3D, Rectangle, Arc, …) and
the definitions of the member functions of all these classes would be in a corresponding
geom.cp file.

A member function definition has the general form:

return type
class_name::function_name(arguments)
{

body of function
}

e.g.

554 Beginners' class

void Customer::PrintDetails(ofstream& out)
{

…
}

double
Point::Radius()
{

…
}

(Some programmers like the layout style where the return type is on a separate line so
that the class name comes at the beginning of the line.)

The double colon :: is the "scope qualifier" operator. Although there are other uses,
the main use of this operator is to associate a class name with a function name when a
member function is being defined. The definitions of all functions of class Point will
appear in the form Point::function_name, making them easy to identify even if they
occur in a file along with other definitions like Point3D::Radius() or Arc::Arc-
Angle()).

Some examples of function definitions are:

double Point::Radius()
{

return fR;
}

void Point::SetX(double newXval)
{

fX = newXval;
FixUpPolarCoords();

}

void Point::Offset(double deltaX, double deltaY)
{

fX += deltaX;
fY += deltaY;
FixUpPolarCoords();

}

Now you may find something slightly odd about these definitions. The code is
simple enough. Offset() just changes the fX and fY fields of the point and then
calls the private member function FixUpPolarCoords() to make the fR, and fTheta
members consistent.

The oddity is that it isn't clear which Point object is being manipulated. After all, a
program will have hundreds of Points as individual variables or elements of arrays of
Points. Each one of these points has its own individual fX and fY data members.

The code even looks as if it ought to be incorrect, something that a compiler should
stomp on. The names fX and fY are names of data members of something that is like a

Scope qualifier
operator

Member function definition 555

struct, yet they are being used on their own while in all previous examples we have only
used member names as parts of fully qualified names (e.g. thePt.fX).

If you had been using the constructs illustrated in Part III, you could have had a
struct Pt and function OffsetPt() and FixPolars():

struct Pt { double x, y, r, t; };

void OffsetPt(Pt& thePoint, double dx, double dy)
{

thePoint.x += dx;
thePoint.y += dy;
FixPolars(thePoint);

}

void FixPolars(Pt& thePt)
{

…
}

The functions that change the Pt struct have a Pt& (reference to Pt) argument; the
value of this argument determines which Pt struct gets changed.

This is obviously essential. These functions change structs (or class instances). The
functions have to have an argument identifying the one that is to be changed. However,
no such argument is apparent in the class member function definitions.

The class member functions do have an implicit extra argument that identifies the
object being manipulated. The compiler adds the address of the object to the list of
arguments defined in the function prototype. The compiler also modifies all references
to data members so that they become fully qualified names.

Rather than a reference parameter like that in the functions OffsetPt() and
FixPolars() just shown, this extra parameter is a "pointer". Pointers are covered in
the next chapter. They are basically just addresses (as are reference parameters).
However, the syntax of code using pointers is slightly different. In particular a new
operator, ->, is introduced. This "pointer operator" is used when accessing a data
member of a structure identified by a pointer variable. A few examples appear in the
following code. More detailed explanations are given in the next chapter.

You can imagine the compiler as systematically changing the function prototypes
and definitions. So, for example:

void Point::SetX(double newXval)
{

fX = newXval;
FixUpPolarCoords();

}

gets converted to

Implicit argument
identifying the object
being manipulated

A "pointer
parameter" identifies
the object

556 Beginners' class

void __Point__SetX_ptsd(Point* this, double newXval)
{

this->fX = newXval;
this->FixUpPolarCoords();

}

while

int Customer::Debtor()
{

return (fAmountOwing > 0.0);
}

gets converted to

int __Customer__Debtor_ptsv(Customer* this)
{

return (this->fAmountOwing > 0.0);
}

The this pointer argument will contain the address of the data, so the compiler can
generate code that modifies the appropriate Point or checks the appropriate Customer.

Normally, you leave it to the compiler to put in "this->" in front of every reference
to a data member or member function; but you can write the code with the "this->"
already present. Sometimes, the code is easier to understand if the pointer is explicitly
present.

19.1.3 Using class instances

Once a class declaration has been read by the compiler (usually as the result of
processing a #include directive for a header file with the declaration), variables of that
class type can be defined:

#include "Customer.h"
…

void RunTheShop()
{

Customer theCustomer;
…

}

or

#include "geom.h"

Using class instances 557

void DrawLine(Point& p1, Point& p2)
{

Point MidPoint;
…

}

Just like structs, variables of class types can be defined, get passed to functions by value
or by reference, get returned as a result of a function, and be copied in assignment
statements.

Most code that deals with structs consists of statements that access and manipulate
individual data members, using qualified names built up with the "." operator. Thus in
previous examples we have had things like:

cout << theVocabItem.fWord;

strcpy(theTable[ndx].fWord, aWord);

With variables of class types you can't go around happily accessing and changing their
data; the data are walled off! You have to ask a class instance to change its data or tell
you about the current data values:

Point thePoint;
…
thePoint.SetX(5.0);
…
if(thePoint.X() < 0.0) …

These requests, calls to member functions, use much the same syntax as the code that
accessed data members of structures. A call uses the name of the object qualified by the
name of the function (and its argument list).

You can guess how the compiler deals with things. You already know that the
compiler has built a function:

void __Point__SetX_ptsd(Point* this, double newXval);

from the original void Point::SetX(double). A call like

thePoint.SetX(5.0);

gets converted into:

__Point__SetX_ptsd(&thePoint, 5.0);

(The & "get the address of" operator is again used here to obtain the address of the point
that is to be changed. This address is then passed as the value of the implicit Point*
this parameter.)

558 Beginners' class

19.1.4 Initialization and "constructor" functions

Variables should be initialized. Previous examples have shown initialization of simple
variables, arrays of simple variables, structs, and arrays of structs. Class instances also
need to be initialized.

For classes like class Point and class Customer, initialization would mean setting
values in data fields. Later, Chapter 23, we meet more complex "resource manager"
classes. Instances of these classes can be responsible for much more than a small
collection of data; there are classes whose instances own opened files, or that control
Internet connections to programs running on other computers, or which manage large
collections of other data objects either in memory or on disk. Initialization for instances
of these more complex structures may involve performing actions in addition to setting
a few values in data members.

So as to accommodate these more complex requirements, C++ classes define special
initialization functions. These special functions are called "constructors" because they
are invoked as an instance of the class is created (or constructed).

There are some special rules for contructors. The name of the function is the same
as the name of the class. A constructor function does not have any return type.

We could have:

class Point {
public:

Point(double initalX = 0.0, double initialY = 0.0);
…

};

class Customer {
public:

Customer();
…

};

The constructor for class Point has two arguments, these are the initial values for
the X, Y coordinates. Default values have been specified for these in the declaration.
The constructor for class Customer takes no arguments.

These functions have to have definitions:

Point::Point(double initialX, double initialY)
{

fX = initialX;
fY = initialY;
FixUpPolarCoords();

}

constructors

Initialization and constructor functions 559

Customer::Customer()
{

strcpy(fName, "New customer");
strcpy(fAddress, "Delivery address");
…
fAmountOwing = 0.0;

}

Here, the constructors do involve calls to functions. The constructor for class Point
initializes the fX, fY data members but must also make the polar coordinates
consistent; that can be accomplished by a call to the member function FixUpPolar-
Coords(). The constructor for Customer makes calls to strcpy from the string library.

A class can have an overloaded constructor; that is there can be more than one
constructor function, with the different versions having different argument lists. The
class Number, presented in Section 19.3, illustrates the use of multiple constructors.

Constructors can get quite elaborate and can acquire many specialized forms.
Rather than introduce these now in artificial examples, these more advanced features
will be illustrated later in contexts where the need arises.

When you need to define intialized instances of a class, you specify the arguments
for the constructor function in the definition of the variable. For example:

Point p1(17.0, 0.5);
Point p2(6.4);
Point p3;

Variable p1 is a Point initially located at 17.0, 0.5; p2 is located at 6.4, 0.0 (using the
default 0.0 value for initialY). Point p3 is located at 0.0, 0.0 (using the defaults for
both initialX and initialY).

Overloaded
constructors

19.1.5 const member functions

Some member functions change objects, others don't. For example:

double Point::Y()
{

return fY;
}

doesn't change the Point for which this function is invoked; whereas the Point is
changed by:

void Point::SetY(double newYval)
{

fY = newYval;
FixUpPolarCoords();

560 Beginners' class

}

It is worthwhile making this clear in the class declaration:

class Point {
public:

…
// Get cartesian coords
double X() const;
double Y() const;
// Get polar coords
double Radius() const;
double Theta() const;
// Test functions
int ZeroPoint() const;
int InFirstQuad() const;
…
// Modify
void Offset(double deltaX, double deltaY);
void SetX(double newXval);
…
// Comparisons
int Equal(const Point& other) const;

Functions that don't change the object should be qualified by the keyword const both in
the declaration, and again in their definitions:

double Point::Radius() const
{

return fR;
}

Apart from acting as an additional documentation cue that helps users understand a
class, const functions are necessary if the program requires const instances of a class.

Now constancy isn't something you often want. After all, a const Customer is one
who never places an order, never sets an address, never does anything much that is
useful. But there are classes where const instances are meaningful. You can imagine
uses for const Points:

const Point MinWindowSize(100.0, 100.0);

But there is a catch. The compiler is supposed to enforce constancy. So what is the
compiler to do with code like:

// I need a bigger window
MinWindowSize.SetX(150.0);
// Test against window limits
if(xv < MinWindowSize.X()) …

const class instances

const member functions 561

The second is a legitimate use of the variable MinWindowSize, the first changes it. The
first should be disallowed, the second is permitted.

The compiler can't know the rules unless you specify them. After all, the code for
class Point may have been compiled years ago, all the compiler has to go on is the
description in the header file. The compiler has to assume the worst. If you don't tell it
that a member function leaves an object unchanged, the compiler must assume that it is
changed. So, by default, a compiler refuses to let you use class member functions to
manipulate const instances that class.

If your class declaration identifies some members as const functions, the compiler
will let you use these with const instances.

19.1.6 inline member functions

Because the data in a class instance are protected, access functions have to be provided,
e.g.:

double Point::X() const
{

return fX;
}

Code needing the x-coordinate of a point must call this access function:

Point p1;
…
while(p1.X() > kMIN) { …; p1.Offset(delta, 0.0); }

Calling a function simply to peek at a data member of an object can be a bit costly.
In practice, it won't matter much except in cases where the access function is invoked in
some deeply nested inner loop where every microsecond counts.

Now inline functions were invented in C++ to deal with situations where you want
function semantics but you don't want to pay for function overheads. Inlines can be
used to solve this particular version of the problem.

As always, the definition of an inline function has to have been read so that the
compiler can expand a function call into actual code. Since classes are going to be
declared in header files that get #included in all the code files that use class instances,
the inline functions definitions must be in the header file.

The following is the preferred style:

#ifndef __MYGEOM__
#define __MYGEOM__

class Point {
public:

562 Beginners' class

…
double X();
…

private:
…
double fX, fY, fR, fTheta;

};

other class declarations if any, e.g. class Arc { };

inline double Point::X() { return fX; }

#endif

Any inline functions get defined at the end of the file.
An alternative style is:

#ifndef __MYGEOM__
#define __MYGEOM__

class Point {
public:

…
double X() { return this->fX; }
…

private:
…
double fX, fY, fR, fTheta;

};

other class declarations if any, e.g. class Arc { };
#endif

Here, the body of the inline function appears in the function declaration (note, an
explicit this-> qualifier on the data members is highly advisable when this style is
used). The disadvantage of this style is that it makes the class declaration harder to
read. Remember, your class declaration is going to be read by your colleagues. They
want to know what your class can do, they don't really care how the work gets done. If
you put the function definitions in the class declaration itself, you force them to look at
the gory details. In contrast, your colleagues can simply ignore any inlines defined at
the end of a header file, they know that these aren't really their concern.

19.2 EXAMPLE: BITMAPS (SETS)

The information retrieval example, Section 18.3, illustrated one simple use of a bitmap
in an actual application The bitmaps in that example used '1/0' bits to indicate whether
a document contained a specific keyword.

Class Bitmap 563

Really, the example illustrated a kind of "set". The bitmap for a document
represented the "set of keywords" in that document. The system had a finite number of
keywords, so there was a defined maximum set size. Each possible keyword was
associated with a specific bit position in the set.

Such sets turn up quite often. So a "bit map" component is something that you
might expect to "reuse" in many applications.

This section illustrates the design and implementation of a class that represents such
bitmaps and provides the functions necessary to implement them. The implementation
is checked out with a small test program.

Designing a general component for reuse is actually quite hard. Normally, you have
a specific application in mind and the functionality that you identify is consequently
biased to the needs of that application. When you later attempt to reuse the class, you
find some changes and extensions are necessary. It has been suggested that a reusable
class is typically created, and then reworked completely a couple of times before it
becomes a really reusable component. So, the class developed here may not exactly
match the needs of your next application, but it should be a good starting point.

Designing a simple class

This example serves as an introduction to the design of a class. Remember a class is a
C++ description of a particular type of component that will be used in programs.
Objects that are instances of the class will own some of the program's data and will
provide all the services related to the owned data. The place to start designing a class is
deciding what data its instances own and what services they provide.

What data does an individual bitmap own? Each instance of class Bitmap will have
an array of unsigned long integers. There shouldn't be any other data members. To
make things simple, we can have the Bitmap class use a fixed size array, with the size
defined by a #define constant.

The next step is to decide what "services" a bitmap object should provide. You
make up a list of useful functions. The list doesn't have to be complete, you can add
further functionality later. Some useful services of a bitmap would be:

• Zeroing; reset all the bits to zero (the constructor function should call this, bit maps
should start with all their bits set to 0).

• Set bit i; and Clear bit i;
Need functions to set (make '1') and clear (make '0') a specified bit. This could be
done by having separate set() and clear() functions, or a set_as() function that had
two arguments – the bit number and the setting. Actually, it would probably be
convenient if the class interface offered both forms because sometimes one form is
more convenient than the other.

• Test bit i;

The data owned

Services provided by
a bitmap

564 Beginners' class

Will often want to test the status of an individual bit.

• Flip bit i;
Change setting of a specified bit, if it was '1' it becomes '0' and vice versa.

• ReadFrom and WriteTo
Will want to transfer the data as a block of binary information.

• PrintOn
Produce a (semi)-readable printout of a bitmap as a series of hex values.

• Count
Get Bitmap to report how many bits it has set to '1'.

• Invert
Not clear whether this function would be that useful, but it might. The invert
function would flip all the bits; all the '1's become '0's, all the '0's become '1's (the
bitmap applies a "Not" operation to itself).

The next group of functions combine two bitmaps to produce a third as a result.
Having a class instance as a function's result is just the same as having a struct as a
result. As explained for structs, you must always consider whether this is wise. It can
involve the use of lots of space on the stack and lots of copying operations. In this case
it seems reasonable. Bitmap objects aren't that large and the function semantics are
sensible.

• "And" with bit map "other"
Returns the bitmap that represents the And of the bitmap with a second bitmap.

• "Inclusive Or" with bitmap "other".

• "Exclusive Or" with bitmap "other".

and for consistency

• "Not"
Returns a bit map that is the inverse of this bitmap.

Finally, we should probably include an "Equals" function that checks equality with a
second bitmap.

The discussion of design based on top down functional decomposition (Chapter 15)
favoured textual rather than diagrammatic representation. Diagrams tend to be more
useful in programs that use classes. Simple diagrams like that shown in Figure 19.1 can
provide a concise summary of a class.

Class Bitmap 565

class Bitmap

Array of unsigned long
integers to hold the bits

Bitmap()
Zero()
SetBit()
ClearBit()
SetAs()
TestBit()
FlipBit()
ReadFrom()
WriteTo()
PrintOn()
Count()
Invert()
And()
Or()
XOr()
Not()
Equals()

Constructor
clears all bits
set, clear, specific bits

examine specific bit
change bit
binary transfers from/to
disk

readable printout
number of bits set
complement
build new bit map by
 Anding, Oring, Xoring
 with other
build complemented copy

Public interface

Private

Figure 19.1 A simple preliminary design diagram for a class.

The figure shows the class with details of its private data and functions all enclosed
within the class boundary. The public member functions stick outside the boundary. In
this example, all the member functions are public.

The first iteration through the design of a class is complete when you have
composed a diagram like Figure 19.1 that summarizes the resources owned by class
instances and their responsibilities.

The next stage in class design involves firming up the function prototypes, deciding
on the arguments, return types, and const status. (There may not be much use for const
Bitmaps, but you should still make the distinction between access functions that merely
look at the data of a class member and modifying procedures that change data.)

In general, it would also be necessary to produce pseudo-code outlines for each
function. This isn't done here as the functions are either trivial or are similar to those
explained in detail in Section 18.3.

The prototypes become:

Bitmap();
void Zero(void);
void SetBit(int bitnum);
void ClearBit(int bitnum);
void SetAs(int bitnum, int setting);

566 Beginners' class

int TestBit(int bitnum) const;
void FlipBit(int bitnum);
void ReadFrom(fstream& in);
void WriteTo(fstream& out) const;
void PrintOn(ostream& printer) const;
int Count(void) const;
void Invert(void);

Bitmap And(const Bitmap& other) const;
Bitmap Or(const Bitmap& other) const;
Bitmap XOr(const Bitmap& other) const;

Bitmap Not(void) const;

int Equals(const Bitmap& other) const;

About the only point to note are the const Bitmap& arguments in functions like
And(). We don't want to have Bitmaps passed by value (too much copying of data) so
pass by reference is appropriate. The "And" operation does not affect the two bitmaps
it combines, so the argument is const. The i/o functions take fstream reference
arguments.

Only 0 and 1 values are appropriate for argument setting in function SetAs(). It
would be possible to define an enumerated type for this, but that seems overkill. The
coding can use 0 to mean 0 (reasonable) and non-zero to mean 1.

Implementation

The Bitmap class will be declared in a header file bitmap.h:

#ifndef __MYBITSCLASS__
#define __MYBITSCLASS__

// Code use iostream and fstream,
// #include these if necessary, fstream.h
// does a #include on iostream.h
#ifndef __FSTREAM_H
#include <fstream.h>
#endif

// Code assumes 32-bit unsigned long integers
#define MAXBITS 512
#define NUMWORDS 16

typedef unsigned long Bits;

class Bitmap {
public:

Bitmap();

Header file for class
declaration

Class Bitmap 567

void Zero(void);
void SetBit(int bitnum);
void ClearBit(int bitnum);
void SetAs(int bitnum, int setting);
int TestBit(int bitnum) const;
void FlipBit(int bitnum);
void ReadFrom(fstream& in);
void WriteTo(fstream& out) const;
void PrintOn(ostream& printer) const;
int Count(void) const;
void Invert(void);

Bitmap And(const Bitmap& other) const;
Bitmap Or(const Bitmap& other) const;
Bitmap XOr(const Bitmap& other) const;

Bitmap Not(void) const;

int Equals(const Bitmap& other) const;
private:

Bits fBits[NUMWORDS];
};

#endif

This header file has a #include on fstream.h. Attempts to compile a file including
bitmap.h without fstream.h will fail when the compiler reaches the i/o functions. Since
there is this dependency, fstream.h is #included (note the use of conditional compilation
directives, if fstream.h has already been included, it isn't read a second time). There is
no need to #include iostream.h; the fstream.h header already checks this.

The functions implementing the Bitmap concept are defined in bitmap.c:

#include "bitmap.h"

Bitmap::Bitmap()
{

Zero();
}

void Bitmap::Zero(void)
{

for(int i=0;i<NUMWORDS; i++)
fBits[i] = 0;

}

The constructor, Bitmap::Bitmap(), can use the Zero() member function to initialize
a bitmap. Function Zero() just needs to loop zeroing out each array element.

void Bitmap::SetBit(int bitnum)

Function definitions
in the separate code
file

568 Beginners' class

{
if((bitnum < 0) || (bitnum >= MAXBITS))

return;
int word = bitnum / 32;
int pos = bitnum % 32;

Bits mask = 1 << pos;
fBits[word] |= mask;

}

Function SetBit() uses the mechanism explained in 18.3. Function ClearBit()
has to remove a particular bit. It identifies the array element with the bit. Then, it sets
up a mask with the specified bit set. Next it complements the mask so that every bit
except the specified bit is set. Finally, this mask is "Anded" with the array element; this
preserves all bits except the one that was to be cleared.

void Bitmap::ClearBit(int bitnum)
{

if((bitnum < 0) || (bitnum >= MAXBITS))
return;

int word = bitnum / 32;
int pos = bitnum % 32;

Bits mask = 1 << pos;
mask = ~mask;
fBits[word] &= mask;

}

Function SetAs() can rely on the implementation of ClearBit() and SetBit():

void Bitmap::SetAs(int bitnum, int setting)
{

if(setting == 0)
ClearBit(bitnum);

else SetBit(bitnum);
}

Function TestBit() uses the same mechanism for identifying the array element and
bit and creating a mask with the chosen bit set. This mask is "Anded" with the array
element. If the result is non-zero, the chosen bit must be set.

int Bitmap::TestBit(int bitnum) const
{

if((bitnum < 0) || (bitnum >= MAXBITS))
return 0;

int word = bitnum / 32;
int pos = bitnum % 32;

Bits mask = 1 << pos;

Class Bitmap 569

return (fBits[word] & mask);
}

Function FlipBit() uses an exclusive or operation to change the appropriate bit in
the correct word (check that you understand how the xor operation achieves the desired
result):

void Bitmap::FlipBit(int bitnum)
{

if((bitnum < 0) || (bitnum >= MAXBITS))
return;

int word = bitnum / 32;
int pos = bitnum % 32;

Bits mask = 1 << pos;
fBits[word] ^= mask;

}

Functions ReadFrom() and WriteTo() perform the binary transfers that copy the
entire between file and memory:

void Bitmap::ReadFrom(fstream& in)
{

in.read(&fBits, sizeof(fBits));
}

void Bitmap::WriteTo(fstream& out) const
{

out.write(&fBits, sizeof(fBits));
}

These functions do not check for transfer errors. That can be done in the calling
environment. When coding class Bitmap, you don't know what should be done if a
transfer fails. (Your IDE's version of the iostream library, and its compiler, may differ
slightly; the calls to read and write may need "(char*)" inserted before &fBits.)

The files produced using WriteTo() are unreadable by humans because they
contain the "raw" binary data. Function PrintOn() produces a readable output:

void Bitmap::PrintOn(ostream& printer) const
{

long savedformat = printer.flags();
printer.setf(ios::showbase);
printer.setf(ios::hex,ios::basefield);

for(int i = 0; i <NUMWORDS; i++) {
printer.width(12);
printer << fBits[i];
if((i % 4) == 3) cout << endl;

570 Beginners' class

}
printer.flags(savedformat);

}

Function PrintOn() has to change the output stream so that numbers are printed in
hex. It would be somewhat rude to leave the output stream in the changed state! So
PrintOn() first uses the flags() member function of ostream to get the current
format information. Before returning, PrintOn() uses another overloaded version of
the flags() function to set the format controls back to their original state.

int Bitmap::Count(void) const
{

int count = 0;
for(int n=0; n < NUMWORDS; n++) {

Bits x = fBits[n];
int j = 1;
for(int i=0;i<32;i++) {

if(x & j)
count++;

j = j << 1;
}

}
return count;

}

The Count() function uses a double loop, the outer loop steps through the array
elements, the inner loop checks bits in the current element. It might be worth changing
the code so that the inner loop was represented as a separate CountBitsInElement()
function. This would be a private member function of class Bitmap.

Functions Invert(), Not() and Equals() all have similar loops that check,
change, or copy and change successive array elements from fBits:

void Bitmap::Invert(void)
{

for(int i=0; i < NUMWORDS; i++)
fBits[i] = ~fBits[i];

}

Bitmap Bitmap:: Not(void) const
{

Bitmap b;
for(int i = 0; i < NUMWORDS; i++)

b.fBits[i] = ~this->fBits[i];
return b;

}

int Bitmap::Equals(const Bitmap& other) const
{

Class Bitmap 571

for(int I = 0; I < NUMWORDS; i++)
if(this->fBits[I] != other.fBits[i]) return 0;

return 1;

}

Note the explicit use of the this-> qualifier in Not() and Equals(). These functions
manipulate more than one Bitmap, and hence more than one fBits array. There are the
fBits data member of the object executing the function, and that of some second
object. The this-> qualifier isn't needed but sometimes it makes things clearer.

You will also note that the Bitmap object that is performing the Equals() operation
is looking at the fBits data member of the second Bitmap (other). What about the
"walls" around other's data?

Classes basically define families of objects and there are no secrets within families.
An object executing code of a member function of the class is permitted to look in the
private data areas of any other object of that class.

The functions And(), Or(), and XOr() are very similar in coding. The only
difference is the operator used to combine array elements:

Bitmap Bitmap::And(const Bitmap& other) const
{

Bitmap b;
for(int i = 0; i < NUMWORDS; i++)

b.fBits[i] = this->fBits[i] & other.fBits[i];
return b;

}

Bitmap Bitmap::Or(const Bitmap& other) const
{

Bitmap b;
for(int i = 0; i < NUMWORDS; i++)

b.fBits[i] = this->fBits[i] | other.fBits[i];
return b;

}

Bitmap Bitmap::XOr(const Bitmap& other) const
{

Bitmap b;
for(int i = 0; i < NUMWORDS; i++)

b.fBits[i] = this->fBits[i] ^ other.fBits[i];
return b;

}

It isn't sufficient to write the class, you must also test it! The test program should
automatically exercise all aspects of the class. This test program becomes part of the
class documentation. It has to be available to other programmers who may need to
extend or modify the existing class and who will need to retest the code after their
modifications.

Accessing data
members of another
object of the same
class

Test program

572 Beginners' class

The test program for class Bitmap is:

int main()
{

Test1();
Test2();
Test3();
return EXIT_SUCCESS;

}

There are three Test functions (and an auxiliary function). As the names imply, the
functions were developed and implemented in sequence. Basic operations were
checked out using Test1() before the code of Test2() and Test3() was
implemented.

The first test function checks out simple aspects like setting and clearing bits and
getting a Bitmap printed:

void Test1()
{

// Try setting some bits and just printing the
// resulting Bitmap
int somebits[] = { 0, 3, 4, 6, 9, 14, 21, 31,
 32, 40, 48, 56,
 64, 91, 92, 93, 94, 95,
 500, 501

};
int n = sizeof(somebits) / sizeof(int);
Bitmap b1;
SetBits(b1, somebits, n);

cout << "Test 1" << endl;
cout << "b1:" << endl;
b1.PrintOn(cout);

cout << "Number of bits set in b1 is " << b1.Count()
<< endl;

cout << "(that should have said " << n << ")" << endl;

if(b1.TestBit(20))
cout << "Strange I didn't think I set bit 20" << endl;

if(!b1.TestBit(3))
cout << "Something just ate my bitmap" << endl;

b1.Invert();

cout << "Look at b1, it's flipped" << endl;
b1.PrintOn(cout);

b1.Zero();

Set bits

Print

Check the count
function

and the test bit
function

Inversion

Class Bitmap 573

SetBits(b1, somebits, n);
cout << "sanity restored" << endl;

b1.ClearBit(4);
b1.FlipBit(6);
b1.FlipBit(7);

cout << "Check for three small changes:" << endl;
b1.PrintOn(cout);

}

An auxiliary function SetBits() was defined to make it easier to set several bits:

void SetBits(Bitmap& theBitmap, int bitstoset[], int num)
{

for(int i=0; i<num; i++) {
int b = bitstoset[i];
theBitmap.SetBit(b);
}

}

Function Test2() checks the transfers to/from files, and also the Equals()
function:

void Test2()
{

int somebits[] = { 0, 1, 2, 3, 5, 7, 11, 13,
 17, 19, 23, 29, 31, 37,
 41, 47

};
int n = sizeof(somebits) / sizeof(int);
Bitmap b1;
SetBits(b1, somebits, n);
fstream tempout("tempbits", ios::out);
if(!tempout.good()) {

cout << "Sorry, Couldn't open temporary output file"
<< endl;

exit(1);
}

b1.WriteTo(tempout);
if(!tempout.good()) {

cout << "Seem to have had problems writing to file"
<< endl;

exit(1);
}

tempout.close();
Bitmap b2;
fstream tempin("tempbits", ios::in | ios::nocreate);
if(!tempin.good()) {

cout << "Sorry, couldn't open temp file with"

Check other bit flips
etc

Write a bit map to file

Read a bitmap from
file

574 Beginners' class

" the bits" << endl;
exit(1);
}

b2.ReadFrom(tempin);
if(!tempin.good()) {

cout << "Seem to have had problems reading from"
" file" << endl;

exit(1);
}

tempin.close();

cout << "I wrote the bitmap :" << endl;
b1.PrintOn(cout);
cout << "I read the bitmap : " << endl;
b2.PrintOn(cout);

if(b1.Equals(b2)) cout << "so i got as good as i gave" <<
endl;

else cout << "which is sad" << endl;

}

The final function checks whether the implementations of And(), Or(), XOr() and
Not() are mutually consistent. (It doesn't actually check whether they are right, just
that they are consistent). It relies on relationships like: "A Or B" is the same as "Not
(Not A And Not B)".

void Test3()
{

int somebits[] = {
2, 4, 6, 8, 16,
33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55,
68, 74, 80, 86,
102, 112, 122, 132,
145, 154, 415, 451
};

int n = sizeof(somebits) / sizeof(int);
Bitmap b1;
SetBits(b1, somebits, n);

int otherbits[] = {
2, 3, 6, 9, 16,
23, 25, 27, 49, 52, 63, 75, 87, 99,
102, 113, 132, 143,
145, 241, 246, 362, 408, 422, 428, 429, 500, 508
};

int m = sizeof(otherbits) / sizeof(int);
Bitmap b2;
SetBits(b2, otherbits, m);

Bitmap b3 = b1.Or(b2);

Check equality

Evaluate Or directly

Class Bitmap 575

Bitmap b4 = b1.Not();
Bitmap b5 = b2.Not();
Bitmap b6 = b4.And(b5);
b6.Invert();

if(b6.Equals(b3)) cout << "The ands, ors and nots are "
"consistent" << endl;

else cout << "back to the drawing board" << endl;

b3 = b1.XOr(b2);
b4 = b1.And(b2);
b5 = b4.Not();
b6 = b1.Or(b2);

b6 = b6.And(b5);
if(b3.Equals(b6)) cout << "XOr kd" << endl;
else cout << "XOr what?" << endl;

}

A class isn't complete until you have written a testing program and checked it out.
Class Bitmap passed these tests. It may not be perfect but it appears useable.

And by using a
sequence of And and
Not operations

Check consistency of
results

Don't forget to check
XOr

19.3 NUMBERS – A MORE COMPLEX FORM OF DATA

Bitmaps are all very well, but you don't use them that often. So, we need an example of
a class that might get used more widely.

How about integers . You can add them, subtract them, multiply, divide, compare
for equality, assign them, ... You may object "C ++ already have integers". This is
true, but not integers like

96531861715696714500613406575615576513487655109

or

-33444555566666677777777888888888999999

or

176890346568912029856350812764539706367893255789655634373681547
453896650877195434788809984225547868696887365466149987349874216
93505832735684378526543278906235723256434856

The integers we want to have represented by a class are LARGE integers; though just
for our examples, we will stick to mediumish integers that can be represented in less
than 100 decimal digits.

576 Beginners' class

Why bother with such large numbers? Some people do need them. Casual users
include: journalists working out the costs of pre-election political promises, economists
estimating national debts, demographers predicting human population. The frequent
users are the cryptographers.

There are simple approaches to encrypting messages, but most of these suffer from
the problem that the encryption/decryption key has to be transmitted, before the
message, by some separate secure route. If you have a secure route for transmitting the
key, then why not use it for the message and forget about encryption?

Various more elaborate schemes have been devised that don't require a separate
secure route for key transmission. Several of these schemes depend in strange ways on
properties of large prime numbers, primes with 60...100 digits. So cryptographers often
do get involved in performing arithmetic with large numbers.

Representing large integers

The largest integer that can be represented using hardware capabilities will be defined
by the constant INT_MAX (in the file limits.h):

#define INT_MAX 2147483647

but that is tiny, just ten decimal digits. How might you represent something larger?
One possibility would be to use a string:

"123346753245098754645661"

Strings make some things easy (e.g. input and output) but it would be hard to do the
arithmetic. The individual digits would have to be accessed and converted into numeric
values in the range 0…9 before they could be processed. The index needed to get a
digit would depend on the length of the string. It would all be somewhat inconvenient.

A better representation might be an array of numbers, each in the range 0…9, like
that shown in Figure 19.2. The array dimension defines largest number that can be
represented, so if we feel ambitious and want 1000 digit numbers then

fDigits[1000];

should make this possible.
Each digit would be an unsigned integer. As the range for the digits is only 0…9

they can be stored using "unsigned char". So, a large integer could be represented
using an array of unsigned characters.

Class Number 577

0 0 0 0 0 9 0 8 5 7 6 6 3 0 4 2 1

0 0 1 0 2 0 0 0 4 0 0 0 8 0 0 7 0

0 0 1 0 2 9 0 8 9 7 6 7 1 0 4 9 1

+

=

Figure 19.2 Large integers represented as arrays.

Arithmetic operations would involve loops. We could simply have the loops check
all one hundred (or one thousand) digits. Generally the numbers are going to have
fewer than the maximum number of digits. Performance will improve if the loops only
process the necessary number of digits. Consequently, it will be useful if along with the
array each "Number" object has details of its current number of digits.

Of course there is a problem with using a fixed size array. Any fixed sized number
can overflow . Overflow was explained in Part I where binary hardware representations
of numbers were discussed. Figure 19.3 illustrates the problem in the context of large
integers. The implementation of arithmetic operations will need to include checks for
overflow.

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

+

=

Overflow

Figure 19.3 "Overflow" may occur with any fixed size number representation.

There has to be a way of representing signed numbers. The smart way would be to
use a representation know as "tens-complement". But that is getting really way out of
our depth. So instead, we can use "sign and magnitude". The array of digits will
represent the size (magnitude) of the number; there will be a separate data member that
represents the sign.

Sign and magnitude representations do have a problem. They complicate some
arithmetic operations. For example, you have to check the signs of both numbers that

Signed numbers

578 Beginners' class

you are combining in order to determine whether you should be doing addition or
subtraction of the magnitude parts:

+ve number PLUS +ve number => Do addition
+ve number PLUS -ve number => Do subtraction
-ve number PLUS +ve number => Do subtraction
-ve number PLUS -ve number => Do addition
+ve number MINUS +ve number => Do subtraction
+ve number MINUS -ve number => Do addition
...

As well as performing the operation, you have to determine the sign of the result.

Doing the arithmetic

How does the arithmetic get done?
The algorithms that manipulate these large integers are going to be the same as those

you learnt way back in primary school. We are going to have to have

addition with "carry" between columns,
subtract with "borrow" between columns,
long multiplication,
long division.

Figure 19.4 illustrates the mechanism of addition with "carry". This can be encoded
using a simple loop:

carry = 0;
for(int i=0; i < lim; i++) {

int temp;
temp = digit[i] of first number +

digit[i] of second number +
Carry;

if(temp>=10) {
Carry = 1; temp -= 10;
}

else Carry = 0;
digit [i] of result = temp;
}

The limit for the loop will be determined by the number of digits in the larger
magnitude value being added. The code has to check for overflow; this is easy, if
Carry is non-zero at the end of the loop then overflow has occurred.

The process of subtraction with "borrow" is generally similar. Of course, you must
subtract the smaller magnitude number from the larger (and reverse the sign if
necessary).

Class Number 579

0 9 0 4 8 3

0 0 0 5 2 8

+

1

1 carry
1

1 carry
0

0 carry
0 9 1

Figure 19.4 Mechanism of addition with carry.

One could do multiplication by repeated addition, but that is a bit slow. Instead a
combination of "shifts", simple products, and addition steps should be used. The
"shifts" handle multiplying by powers of ten, as shown in Figure 19.5. The process
would have to be coded using several separate functions. An overall driver routine
could step through the digits of one of the numbers, using a combination of a "times
ten" and a "product" routine, and employing the functions written to handle addition.

for(int i=0;i<limit; i++)
if(digit[i] != 0) {

temp = other number * 10i

use product function to multiply temp
by digits[i]

add product into result
}

(
Check the outline multiplication code; you should find that this is the algorithm that you
use to do "long multiplication".)

The hardest operation is division. A form of "long division" has to be coded. This
is actually quite a hard algorithm to code. But you don't have to. It is standard, so
versions are available in subroutine libraries.

580 Beginners' class

0 0 4 1 5 2

0 4 1 5 2 0

000

000

0 0 4 1 5 2

0 4 1 5 2 0

000

000 0

0 1 4 0 3 7

0 8 4 2 2 2

*6
=

0

0

0

Shifts
for multiplying

by 10, 100,
etc

Simple
product

Figure 19.5 Shift and simple product sub-operations in multiplication.

P. Brinch Hansen recently published a version of the long division
algorithm("Software Practice and Experience", June 1994). His paper gives a model
implementation (in Pascal) with the long division process broken down into a large
number of separate routines that individually are fairly simple. (The implementation of
the Number class includes a C++ version of Brinch Hansen's code. You should read the
original paper if you need a detailed explanation of the algorithm.)

Specification

Implement a class that represents multi digit integer numbers. This "Numbers" class
should support the basic arithmetic operations of addition, subtraction, multiplication,
and division. It should be possible to transfer Numbers to/from disk, and to print
readable representations of numbers. Comparison functions for numbers should be
defined. It should be possible to initialize a Number from an ordinary long integer
value, or from a given string of digits.

Class Number 581

Design

First, consider the data. What data does an individual Number own? Each instance of
class Number will have an array of unsigned long characters to store the digits. In
addition, there has to be a "sign" data member (another unsigned character) and a length
data member (a short integer). The size of the array of unsigned characters can be
defined by a #define constant.

unsigned char fDigits[kMAXDIGITS+1]; // +1 explained later
unsigned char fPosNeg;
short fLength;

The next step is to decide what "services" a Number object should provide. As in the
previous example, you make up a list of useful functions – things that a Number might
be expected to do. The list is definitely not going to be the complete list of member
functions. As already noted, functions like "Multiply" and "Divide" are complex and
will involve auxiliary routines (like the "times 10" and "product" needed by
"Multiply"). These extra auxiliary routines will be added to the list of member
functions as they are identified during the design process. These extra functions will
almost always be private; they will be simply an implementation detail.

When writing a test program to exercise a class, you may identify the need for
additional member functions. Getting a class right does tend to be an iterative process.

The following functions form a reasonable starting point:

• Constructors.
Several of these. The simplest should just initialize a Number to zero. The
specification required other constructors that could initialize a Number to a given
long and to a given string.

Another constructor that would probably be useful would initialize a Number given
an existing Number whose value is to be copied.

• Add, Subtract, Multiply, Divide.
These combine two numbers. It seems reasonable to make them functions that
return a Number as a result. A Number isn't too large (around 100-110 bytes) so
returning a Number in the stack is not too unreasonable. A function giving a
Number as a result would also be convenient for programs using Numbers.

• Zero.
Probably useful, to have a function that tests whether a Number is zero, and another
function that zeros out an existing Number.

• ReadFrom, WriteTo.
Binary transfer to files.

The data owned

Services provided by
a Number

582 Beginners' class

• PrintOn.
Output. Probably just print digit sequence with no other formatting. One hundred
digit numbers just about fit on a line. If Numbers were significantly larger, it would
be necessary to work out an effective way of printing them out over several lines.

• Compare.
Can return a -1, 0, or 1 result depending on whether a Number is less than, equal to,
or bigger than the Number that it was asked to compare itself with.

• ChangeSign.
Probably useful.

The functions that combine Numbers to get a Number as a result will take the second
Number as a reference argument.

We can jump immediately to function prototypes and complete a partial declaration
of the class:

#define kMAXDIGITS = 100;

class Number {
public:

Number();
Number(long);
Number(char numstr[]);
…

void ReadFrom(ifstream& in);
void WriteTo(ofstream& out) const;
void PrintOn(ostream& printer) const;

Number Add(const Number& other) const;
Number Subtract(const Number& other) const;
Number Multiply(const Number& other) const;
Number Divide(const Number& other) const;
int Zero_p() const;
void MakeZero();

int Equal(const Number& other) const;
void ChangeSign();
int Compare(const Number& other) const;

private:
// private functions still to be defined
…
…

unsigned char fDigits[kMAXDIGITS+1];
unsigned char fPosNeg; // 0 => positive, 1 => negative
short fLength;

};

Prototypes

Class Number 583

It is worthwhile coming up with this kind of partial class outline fairly early in the
design process, because the outline can then provide a context in which other design
aspects can be considered. (The extra digit in the fDigits data member simplifies one
part of the division routines.)

There aren't many general design issues remaining in this class. One that should be
considered is error handling. There are several errors that we know may occur. We can
ignore i/o errors, they can be checked by the calling environment that transfers Numbers
to and from disk files. But we have to deal with things like overflow. Another problem
is dealing with initialization of a Number from a string. What should we do if we are
told to initialize a Number with the string "Hello World" (or, more plausibly,
"1203o5l7" where there are letters in the digit string)?

Chapter 26 introduces the C++ exception mechanism. Exceptions provide a means
whereby you can throw error reports back to the calling code. If you can't see a general
way of dealing with an error when implementing code of your class, you arrange to pass
responsibility back to the caller (giving the caller sufficient information so that they
know what kind of error occurred). If the caller doesn't know what to do, the program
can terminate. But often, the caller will be able to take action that clears the error
condition.

For now, we use a simpler mechanism in which an error report is printed and the
program terminates.

When defining a class, you always need to think about "assignment":

Number a:
Number b;
…
b = a;

Just as in the case of Bitmaps, assignment of Numbers presents no problems. A Number
is simply a block of bytes; the compiler will generate "memory copy" instructions to
implement the assignment. Later examples will illustrate cases where you may wish to
prohibit assignment operations or you may need to change the compiler's default
implementation.

Detailed design and implementation

Some of the member functions of class Number are simple, and for these it is possible to
sketch pseudo-code outlines, or even jump straight to implementation. These member
functions include the default constructor:

Number::Number()
{

fPosNeg = 0;
for(int i=0; i<= kMAXDIGITS; i++) fDigits[i] = 0;
fLength = 0;

Error handling

Assignment of
Numbers

584 Beginners' class

}

The next two constructors are slightly more elaborate:

Number::Number(long lval)
{

fPosNeg = 0;
if(lval<0) { fPosNeg = 1; lval = -lval; }
for(int i=0; i<= kMAXDIGITS; i++) fDigits[i] = 0;
fLength = 0;
while(lval) {

fDigits[fLength++] = lval % 10;
lval = lval / 10;
}

}

Number::Number(char numstr[])
{

for(int i=0;i<= kMAXDIGITS; i++) fDigits[i] = 0;
fPosNeg = 0; /* Positive */
i = 0;
fLength = strlen(numstr);

if(numstr[i] =='+') { i++; fLength--; }
else
if(numstr[i] =='-') { fPosNeg = 1; i++; fLength--; }

int pos = fLength - 1;

while(numstr[i] != '\0') {
if(!isdigit(numstr[i])) {

cout << "Bad data in number input\n";
exit(1);
}

fDigits[pos] = numstr[i] - '0';
i++;
pos--;
}

while((fLength>0) && (fDigits[fLength-1] == 0)) fLength--;
}

You shouldn't have any difficulty in understanding the constructor that initializes a
Number from a long integer value. The code just has a loop that fills in digits starting
with the units, then the tens and so forth.

The constructor that takes a character string first checks for a + or - sign. Then it
loops processes all remaining characters in the string. If any are non-digits, the
program terminates with an error message. Digit characters are converted into numeric
values in range 0…9 and placed in the correct locations of the array. (Note how the

Check for ± sign at
start of string

Loop to process all
characters in string

Fix up any case
where given leading
zeros

Class Number 585

length of the string is used to determine the number of digits in the number, and hence
the digit position in the array to be filled in with the first digit taken from the string.)
The final loop just corrects for any cases where there were leading zeros in the string.

Very often you need to say something like "Give me a Number just like this one".
This is achieved using a copy constructor. A copy constructor takes an existing class
instance as a reference argument and copies the data fields:

Number::Number(const Number& other)
{

fPosNeg = other.fPosNeg;
fLength = other.fLength;
for(int i=0; i<= kMAXDIGITS; i++)

fDigits[i] = other.fDigits[i];
}

Other simple functions include the comparison function and the input/output
functions:

int Number::Compare(const Number& other) const
{

if(fPosNeg != other.fPosNeg) {
/* The numbers have opposite signs.
If this is positive, then return "Greater" else
return "Less". */
return (fPosNeg == 0) ? 1 : -1;
}

if(fLength > other.fLength)
return (fPosNeg == 0) ? 1 : -1;

if(fLength < other.fLength)
return (fPosNeg == 0) ? -1 : 1;

for(int i = fLength-1;i>=0;i--)
if(fDigits[i] > other.fDigits[i])

return (fPosNeg == 0) ? 1 : -1;
else
if(fDigits[i] < other.fDigits[i])

return (fPosNeg == 0) ? -1 : 1;

return 0;
}

void Number::WriteTo(ofstream& out) const
{ // Remember, some iostreams+compilers may require (char*)

out.write(&fDigits, sizeof(fDigits));
out.write(&fPosNeg, sizeof(fPosNeg));
out.write((char*)&fLength, sizeof(fLength)); // like this

}

Copy constructor

Can tell result from
signs if these not the
same

Otherwise by number
of digits if they differ

But sometimes have
to compare digit by
digit from top

586 Beginners' class

void Number::PrintOn(ostream& printer) const
{

if(fLength==0) { printer << "0"; return; }

if(fPosNeg) printer << "-";
int i = kMAXDIGITS;
i = fLength - 1;

while(i>=0) {
printer << char('0' + fDigits[i]);
i--;
}

}

The WriteTo() function uses a separate call to write() for each data member. (the
ReadFrom() function uses equivalent calls to read()). Sometimes this gets a bit
clumsy; it may be worth inventing a struct that simply groups all the data members so
as to facilitate disk transfers.

A few of the member functions are sufficiently simple that they can be included as
inlines:

inline int Number::Zero_p() const
{

return (fLength == 0);
}

inline void Number::ChangeSign()
{

if(fPosNeg) fPosNeg = 0;
else fPosNeg = 1;

}

As noted previously, such functions have to be defined in the header file with the class
declaration.

The detailed design of the harder functions, like Subtract(), Multiply() and
Divide(), really becomes an exercise in "top down functional decomposition" as
illustrated by the many examples in Part III. You have the same situation. You have a
"program" to write (e.g. the "Multiply program") and the data used by this program are
simple (the data members of two class instances).

The addition and subtraction functions are to be called in code like:

Number a("1239871154378100173165461515");
Number b("71757656755466753443546541431765765137654");
Number c;
Number d;
c = a.Add(b);
d = a.Subtract(b);

Designing little
programs!

The "Add Program"
and the "Subtract

Program"

Class Number 587

Sign and magnitude
representation
complicates the
process

The Add() (and Subtract()) functions are to return, via the stack, a value that
represents the sum (difference) of the Numbers a and b. As noted in the introduction,
sign and magnitude representations make things a bit more complex. You require lower
level "do add" and "do subtract" functions that work using just the magnitude data. The
actual Add() function will use the lower level "do add" if it is called to combine two
values with the same sign, but if the signs are different the "do subtract" function must
be called. Similarly, the Subtract()function will combine the magnitudes of the two
numbers using the lower level "do add" and "do subtract" functions; again, the function
used to combine the magnitude values depends upon the signs of the values.

There is a further complication. The actual subtraction mechanism (using "borrows"
etc) only works if you subtract the smaller magnitude number from the larger
magnitude number. The calls must be set up to get this correct, with the sign of the
result being changed if necessary.

The following are sketches for the top level routines:

Add
// Returns sum of "this" and other

initialize result to value of "this"

if(other is zero)
return result;

if("this" and other have same sign) {
do addition operation combining result with other;
return result;
}

else
return DoSubtract(other);

The code starts by initializing the result to the value of "this" (so for a.Add(b), the
result is initialized to the value of a). If the other argument is zero, it is possible to
return the result. Otherwise we must chose between using a "do add" function to
combine the partial result with the other argument, or calling DoSubtract() which will
sort out subtractions.

The code for the top-level Subtract() function is similar, the conditions for using
the lower-level addition and subtraction functions are switched:

Subtract
// Returns difference of "this" and other

initialize result to value of "this"

if(other is zero)
return result;

if("this" and other have same sign)
return DoSubtract(other);

else {

588 Beginners' class

do addition operation combining result with other
return result;
}

}

These sketches identify at least one new "private member function" that should be
added to the class. It will be useful to have:

int SameSign(const Number& other) const;

This function checks the fPosNeg data members of an object and the second Number
(other) passed as an argument (i.e. return (this->fPosNeg == other.fPosNeg);).
This can again be an inline function.

We also need to initialize a variable to the same value as "this" (the object executing
the function). This can actually be done by an assignment; but the syntax of that kind
of assignment involves a deeper knowledge of pointers and so is deferred until after the
next chapter. Instead we can use a small CopyTo() function:

void Number::CopyTo(Number& dest) const
{

// This function is not needed.
// Can simply have dest = *this; at point of call.
// Function CopyTo introduced to delay discussion of *this
// until pointers covered more fully.
dest.fLength = this->fLength;
dest.fPosNeg = this->fPosNeg;
for(int i=0; i<= kMAXDIGITS; i++)

dest.fDigits[i] = this->fDigits[i];
}

Both Add() and Subtract() invoked the auxiliary function DoSubtract(). This
function has to sort out the call to the actual subtraction routine so that the smaller
magnitude number is subtracted from the larger (and fix up the sign of the result):

DoSubtract
// Set up call to subtract smaller from larger magnitude

if(this is larger in magnitude than other)
Initialize result to "this"
call actual subtraction routine to subtract other

from result
else

Initialize a temporary with value of this
set result to value of other;

call actual subtraction routine to subtract temp.
from result

if(subtracting) change sign of result

New member
functions identified

Class Number 589

return result;

Yet another auxiliary function shows up. We have to compare the magnitude of
numbers. The existing Compare() routine considers sign and magnitude but here we
just want to know which has the larger digit string. The extra function, LargerThan(),
becomes an additional private member function. Its code will be somewhat similar to
that of the Compare() function involving checks on the lengths of the numbers, and
they have the same number of digits then a loop checking the digits starting with the
most significant digit.

An outline for the low level "do add" routine was given earlier when the "carry"
mechanism was explained (see Figure 19.4). The lowest level subtraction routine has a
rather similar structure with a loop that uses "borrows" between units and tens, tens and
hundreds, etc.

With the auxiliary functions needed for addition and subtraction the class declaration
becomes:

class Number {
public:

Number();
…
// Public Interface unchanged
…
int Compare(const Number& other) const;

private:
int SameSign(const Number& other) const;
void DoAdd(const Number& other);
Number DoSubtract(const Number& other, int subop) const;
void SubtractSub(const Number& other);

int LargerThan(const Number& other) const;
void CopyTo(Number& dest) const;

unsigned char fDigits[kMAXDIGITS+1];
unsigned char fPosNeg;
short fLength;

};

The implementation for representative functions is as follows:

Number Number::Subtract(const Number& other) const
{

Number result;
CopyTo(result);

if(other.Zero_p()) return result;

if(this->SameSign(other))
return DoSubtract(other, 1);

Class handling
additions and
subtractions

590 Beginners' class

else {
result.DoAdd(other);
return result;
}

}

The Add() routine is very similar. It should be possible to code it, and the auxiliary
DoSubtract() from the outlines given.

Both the DoAdd() and the SubtractSub() routines work by modifying a Number,
combining its digits with the digits of another number. The implementation of
DoAdd(), "add with carry", is as follows:

void Number::DoAdd(const Number& other)
{

int lim;
int Carry = 0;
lim = (fLength >= other.fLength) ? fLength : other.fLength;
for(int i=0;i<lim; i++) {

int temp;
temp = fDigits[i] + other.fDigits[i] + Carry;
if(temp>=10) { Carry = 1; temp -= 10; }
else Carry = 0;
fDigits[i] = temp;
}

fLength = lim;
if(Carry) {

if(fLength == kMAXDIGITS) Overflow();
fDigits[fLength] = 1;
fLength++;
}

}

A routine has to exist to deal with overflow (indicated by carry out of the end of the
number). This would not need to be a member function. The implementation used a
static filescope function defined in the same file as the Numbers code; the function
printed a warning message and terminated.

The function SubtractSub() implements the "subtract with borrow" algorithm:

void Number::SubtractSub(const Number& other)
{

int Borrow = 0;
int newlen = 0;
for(int i=0;i<fLength; i++) {

int temp;
temp = fDigits[i] - other.fDigits[i] - Borrow;
if(temp < 0) { temp += 10; Borrow = 1; }
else Borrow = 0;
fDigits[i] = temp;
if(temp) newlen = i+1;

Loops limited by
magnitude of larger

number

Deal with any final
carry, check for
Overflow

Handling overflow

Class Number 591

}
fLength = newlen;
if(fLength==0) fPosNeg = 0;

}

(If the result is ±0, it is made +0. It is confusing to have positive and negative version
of zero.)

In a phased implementation of the class, this version with just addition and
subtraction would be tested.

The usage of the multiplication routine is similar to that of the addition and
subtraction routines:

Number a("1239871154378100173165461515");
Number b("71757656755466753443546541431765765137654");
Number c;
c = a.Multiply(b);

Function Multiply() again returns a Number on the stack that represents the product
of the Number executing the routine ('a') and a second Number ('b').

Sign and magnitude representation doesn't result in any problems. Getting the sign
of the product correct is easy; it the two values combined have the same sign the
product is positive otherwise it is negative. The basics of the algorithm was outlined in
the discussion related to Figure 19.5. The code implementing the algorithm is:

Number Number::Multiply(const Number& other) const
{

Number Result; // Number defaults to zero

if(other.Zero_p()) { return Result; }

for(int i=0;i<fLength; i++)
if(fDigits[i]) {

Number temp(other);

temp.Times10(i);
temp.Product(fDigits[i]);
Result = Result.Add(temp);
}

if(SameSign(other))
Result.fPosNeg = 0;

else Result.fPosNeg = 1;

return Result;
}

The routine forms a product like:

The "Multiply
Program"

Note use of "Copy
constructor"

592 Beginners' class

19704 * 6381

by calculating

4 * 6381 25524 (4*6381*100)
0 * 63810 0 (0*6381*101)
7 * 638100 4466700 (7*6381*102)
9 * 6381000 57429000 (9*6381*103)
1 * 63810000 63810000 (1*6381*104)
Total = 125731224

Two more auxiliary functions are needed. One, Times10(), implements the shifts to
multiply by a specified power of ten. The other, Product(), multiplies a Number by a
value in the range 0…9. Both change the Number for which they are invoked. Partial
results from the individual steps accumulate in Result.

void Number::Times10(int power)
{

if((fLength+power)>kMAXDIGITS) Overflow();
for(int i = fLength-1;i>=0;i--) fDigits[i+power] = fDigits[i];
for(i = power-1;i>=0;i--) fDigits[i] = 0;
fLength += power;

}

Function Times10() needs to check that it isn't going to cause overflow by shifting a
value too far over. If the operation is valid, the digits are just moved leftwards and the
number filled in at the right with zeros.

The Product() routine is a bit like "add with carry":

void Number::Product(int k)
{

int lim;
int Carry = 0;
if(k==0) {

MakeZero();
return;
}

lim = fLength;
for(int i=0;i<lim; i++) {

int temp;
temp = fDigits[i]*k + Carry;
Carry = temp / 10;
temp = temp % 10;
fDigits[i] = temp;
}

if(Carry) {
if(fLength == kMAXDIGITS) Overflow();
fDigits[fLength] = Carry;

Further private
member functions

Class Number 593

fLength++;
}

}

You must remember this:

 0000029------------------
49853 |1467889023451770986543175

 99706
 470829
 448677

(unless your primary school teachers let you use a calculator). You found long division
hard then; it still is.

As with multiplication, getting the sign right is easy. If the dividend and divisor
have the same sign the result is positive, otherwise it is negative. The Divide()
routine itself can deal with the sign, and also with some special cases. If the divisor is
zero, you are going to get overflow. If the divisor is larger than the dividend the result
is zero. A divisor that is a one digit number is another special case handled by an
auxiliary routine. The Divide() function is:

Number Number::Divide(const Number& other) const
{

if(other.Zero_p()) Overflow();
Number Result; // Initialized to zero

if(!LargerThan(other))
return Result; // return zero

CopyTo(Result);

if(other.fLength == 1)
Result.Quotient(other.fDigits[0]);

else
Result.LongDiv(other);

if(other.fPosNeg == fPosNeg) Result.fPosNeg = 0;
else Result.fPosNeg = 1;

return Result;
}

The auxiliary (private member) function Quotient() deals with simple divisions
(e.g. 77982451 ÷ 3 = 2599…). You start with the most significant digit, do the division
to get the digit, transfer any remainder to the next less significant digit:

void Number::Quotient(int k)
{

The "Divide"
Program

594 Beginners' class

int Carry = 0;
int newlen = 0;
for(int i= fLength-1;i>=0;i--) {

int temp;
temp = 10*Carry + fDigits[i];
fDigits[i] = temp / k;
if((newlen==0) && (fDigits[i] !=0)) newlen = i+1;
Carry = temp % k;
}

fLength = newlen;
}

The main routine is LongDiv(). Brinch Hansen's algorithm is moderately complex
and involves several auxiliary functions that once again become private member
functions of the class. The code is given here without the explanation and analysis
(available in Brinch Hansen's paper in Software Practice and Experience):

void Number::LongDiv(const Number& other)
{

int f;
Number d(other);
Number r;
CopyTo(r);
int m = other.fLength;
int n = fLength;

f = 10 / (other.fDigits[m-1] + 1);
r.Product(f);
d.Product(f);

int newlen = 0;
for(int k = n - m; k>=0; k--) {

int qt;
qt = r.Trial(d,k,m);
if(qt==0) {

fDigits[k] = 0;
continue;
}

Number dq(d);
dq.Product(qt);
if(r.Smaller(dq,k,m)) { qt--; dq = dq.Subtract(d); }
if((newlen==0) && (qt !=0)) newlen = k+1;
fDigits[k] = qt;
r.Difference(dq,k,m);
}

fLength = newlen;
}

int Number::Trial(const Number& other, int k, int m)
{

Using lengths of
numbers to get idea

of size of quotient

loop filling in
successive digits of

quotient

Taking a guess at
next digit of quotient

Class Number 595

int km = k + m;
int r3;
int d2;
km = k + m;
r3 = (fDigits[km]*10 + fDigits[km-1])*10 + fDigits[km-2];
d2 = other.fDigits[m-1]*10 + other.fDigits[m-2];
int temp = r3 / d2;
return (temp<9) ? temp : 9;

}

int Number::Smaller(const Number& other, int k ,int m)
{

int i;
i = m;
for(;i>0;i--)

if(fDigits[i+k] != other.fDigits[i]) break;
return fDigits[i+k] < other.fDigits[i];

}

void Number::Difference(const Number& other, int k, int m)
{

int borrow = 0;
for(int i = 0; i <= m; i++) {

int diff = fDigits[i+k] -
other.fDigits[i] - borrow + 10;

fDigits[i+k] = diff % 10;
borrow = 1 - (diff / 10);
}

if(borrow) Overflow();
}

With all these auxiliary private member functions, the final class declaration
becomes:

class Number {
public:

Number();
Number(long);
Number(const Number& other);
Number(char numstr[]);
Number(istream&);

void ReadFrom(ifstream& in);
void WriteTo(ofstream& out) const;
void PrintOn(ostream& printer) const;

Number Add(const Number& other) const;
Number Subtract(const Number& other) const;
Number Multiply(const Number& other) const;
Number Divide(const Number& other) const;
int Zero_p() const;

Final class
declaration

596 Beginners' class

void MakeZero();
int Equal(const Number& other) const;
void ChangeSign();
int Compare(const Number& other) const;

private:
int SameSign(const Number& other) const;
void DoAdd(const Number& other);
Number DoSubtract(const Number& other, int subop) const;
void SubtractSub(const Number& other);

void Product(int k);
void Quotient(int k);

void Times10(int power);
int LargerThan(const Number& other) const;

void LongDiv(const Number& other);
int Trial(const Number& other, int, int);
int Smaller(const Number& other, int, int);
void Difference(const Number& other, int, int);

void CopyTo(Number& dest) const;

unsigned char fDigits[kMAXDIGITS+1];
unsigned char fPosNeg;
short fLength;

};

Testing

The class has to be tested. Simple programs like:

int main()
{

Number a("123456789");
Number b("-987654");
Number c;
c = a.Add(b); cout << "Sum "; c.PrintOn(cout); cout <<

endl;
c = a.Subtract(b); cout << "Difference ";

c.PrintOn(cout); cout << endl;
c = a.Multiply(b); cout << "Product ";

c.PrintOn(cout); cout << endl;
c = a.Divide(b); cout << "Quotient ";

c.PrintOn(cout); cout << endl;
return 0;

}

Class Number 597

check the basics. As long the values are less than ten digits you can verify them on a
calculator or with a spreadsheet program (or even by hand).

You would then proceed to programs such as one calculating the expressions (a-
b)*(c+d) and (ac-bc+ad-bd) for different randomly chosen values for the Numbers a, b,
c, and d (the two expressions should have the same value). A similar test routine for the
multiplication and divide operations would check that (a*b*c*d)/(a*c) did equal (b*d);
again the expressions would be evaluated for hundreds of randomly selected values. (A
small random value can be obtained for a Number as follows: long lv; lv = rand()
% 25000; lv -= 12500; Number a(lv); …. Alternatively, an additional
"Randomize()" function can be added to the class that will fill in Numbers with
randomly chosen 40 digit sequences and a random sign. You limit the size of these
random values so that you could multiply them without getting overflows). Such test
programs need only generate outputs if they encounter cases where the pair of
supposedly equal calculated values are not in fact equal.

If the class were intended for serious use in an application, you would then use a
profiling tool like that described in Chapter 14. This would identify where a test
program spent most time. The test program has to use Numbers in the same manner as
the intended application. If the application uses a lot of division so should the test
program.

Such an analysis was done on the code and the Product() routine showed up as
using a significant percentage of the run time. If you look back at the code of this
routine you will see that it treats multiplication by zero as a special case (just zero out
the result and return); other cases involve a loop that multiplies each digit in the
Number, getting the carry etc. Multiplying by 1 could also be made a special case. If
the multiplier is 1, the Number is unchanged. This special case would be easy to
incorporate by an extra test with a return just before the main loop in the Product()
routine. Retesting showed that this small change reduced the time per call to
Product() from 0.054 to 0.049µs (i.e. worthwhile). Similar analysis of other member
functions could produce a number of other speed ups; however, generally, such
improvements would be minor, in the order of 5% to 10% at most.

Automatic test
programs

Optimising the code

19.4 A GLANCE AT THE "IOSTREAM" CLASSES

Now that you have seen example class declarations and functions, and seen objects
(class instances) being asked to perform functions, the syntax of some of the input and
output statements should be becoming a little clearer.

The iostream header file contains many class declarations, including:

class ostream … (some detail omitted here) … {
public:

…
ostream &flush();
// Flush any characters queued for output.

598 Beginners' class

ostream &put(char c);
// Inserts a character

ostream &write(const void *data, size_t size);
// writes data, your version of iostream may use
// different argument types
…

};

Functions like put(), and write() are public member functions of the class. So, if
you have an ostream object out, you can ask that object to perform a write operation
using the expression:

out.write(&dataval, sizeof(dataval));

In Chapter 23, the strange "takes from" << and "gives to" >> operators will get
explained.

EXERCISES

1 Implement class Numbers, filling in all the simple omitted routines and check that these
Numbers do compute.

2 Add an "integer square root" member function that will use Newton's method to find the
integer x such that x is the largest integer for which x2 <= N for a given Number N.

3 Often, users of these large numbers want the remainder and not the quotient of a division
operation. The LongDiv() routine actually computes but discards the remainder. Add an
extra member function that will calculate the remainder. It should be based on the existing
Divide() and LongDiv() functions.

4 Write a program that tests whether a given Number is prime. (The program will be
somewhat slow, probably not worth testing any numbers bigger than 15 digits.)

